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An information theoretic approach inspired by quantum statistical mechanics was recently proposed
as a means to optimize network models and to assess their likelihood against synthetic and real-
world networks. Importantly, this method does not rely on specific topological features or network
descriptors, but leverages entropy-based measures of network distance. Entertaining the analogy
with thermodynamics, we provide a physical interpretation of model hyperparameters and propose
analytical procedures for their estimate. These results enable the practical application of this novel and
powerful framework to network model inference. We demonstrate this method in synthetic networks
endowed with a modular structure, and in real-world brain connectivity networks.

I. INTRODUCTION

Many natural and artificial phenomena can be repre-
sented as networks of interacting elements. The mathe-
matical framework of network theory can be applied
across disciplines, ranging from sociology to neuro-
science, and provides a powerful means to investigate a
variety of diverse phenomena [1]. Unveiling the struc-
tural and organizational principles of complex networks
often implies comparison with statistical network models.
Generative models, for example, describe mechanisms
of network wiring and evolution [2, 3], or the constraints
that may have contributed to shaping the network topol-
ogy during its development [4]. Null models are used
to describe maximally random networks with specific
features, for example prescribed sequences of node de-
grees [5].

Maximum likelihood approaches have been proposed
to compare the ability of different models to describe
real-world networks and to optimize model parameters
to best fit experimental networks. These methods are
designed to assign the same probability to networks sat-
isfying the same set of constraint, but hardly can take
into account the whole network structure [6].

Recently, an information theoretic framework inspired
by quantum statistical mechanics principles has been
proposed as a tool to assess and optimize network mod-
els [7]. This approach relies on the minimization of the
relative entropy based on the network spectral proper-
ties. Importantly, this relative entropy does not depend
on a distribution of specific descriptors, but considers
the network as a whole. However, this representation
introduces an external, tunable hyperparameter β: the
optimal estimate from the relative entropy minimization
procedure critically depends on the choice of β, a major
limitation to the practical use of this framework.

Relative entropy is a central concept in thermodynam-
ics of information (see review [8]) and is defined on the

basis of the density matrix. In light of this thermody-
namic analogy, here we build a physical interpretation of
this approach to network optimization and fitting, where
β plays the role of an inverse temperature. This provides
criteria for a rigorous selection of the optimal β, and
enables the practical application of relative entropy mini-
mization in the optimal reconstruction of parameters for
different network models.

The paper is structured as follows. First, we present
the theoretical framework of classical maximum entropy
null models as a way to generate maximally random en-
semble of networks with given constraints. We move on
to briefly discussing how the Erdős-Rényi random graph
and the configuration model emerge naturally from these
ideas.

Within the settings of spectral entropies, we propose
a new practical optimization method based on an ap-
proximation of the Laplacian spectrum and give a con-
cise closed form expression for the gradients of relative
entropy with respect to the model parameters. We con-
tinue discussing a thermodynamic interpretation of the
meaning of relative entropy optimization in terms of
irreversible processes.

We calculate analytically the optimal temperature pa-
rameter of the Erdős-Rényi and planted partition models.
Furthermore, we generalize this result to more complex
models with the help of numerical simulations showing
the advantages of the spectral entropy approach with
respect to other maximum likelihood methods.

Finally, we demonstrate the use of spectral entropies
for the optimization of a generative model of neural con-
nectivity in a real-world dataset.

II. MODELS OF COMPLEX NETWORKS

We summarize here a few definitions which are neces-
sary to make this paper self-contained. Let us consider
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here simple binary undirected graphs G = (V, E) with
|V| = n number of nodes and |E| = m number of links.

The adjacency matrix is denoted as A = {aij} and the
(combinatorial) graph Laplacian as L = D−A, where D
is the diagonal matrix of the node degrees. Notably, the
(combinatorial) Laplacian matrix associated with an undi-
rected graph is a semi-positive definite matrix, meaning
that all its eigenvalues λ1 ≥ . . . ≥ λn = 0 are positive (or
zero) and real. A random graph model is an ensemble
of networks randomly defined in the probability space
Ω and distributed around some specific network prop-
erty. For example, in the Gilbert random graph model
the probability distribution P(G) is sharply peaked in
P(G) = 1/Ω for graphs with n nodes and exactly m
edges, and is zero otherwise [1]. This distribution is well
described in statistical mechanics as the microcanonical
ensemble, as it enforces the constraints strictly.

However, given the combinatorial complexity of deal-
ing with the micro-canonical description, it is easier to fix
the average value of observables of interest rather than
working with exact constraints. This approach gives
rise to the canonical ensemble of random graphs [1, 9].
This type of models has the same role in the study of
complex networks as the Boltzmann distribution in clas-
sical statistical mechanics; it gives the maximally unin-
formed prediction of some network properties subject to
the imposed constraints. These ideas can be dated back
to the Jaynes’ maximum entropy principle [10]. In this
sense, the maximally random ensemble of graphs sat-
isfying the imposed topological constraints on average
also takes the name of the Exponential Random Graph
Model (ERGM) [1] or p∗-model in the social sciences [5].
In its simplest implementation, the ERGM results in the
Erdős-Rényi [11] model, where the link probability is
constant.

On the other hand, if one wants to generate the maxi-
mally random network that maintains the desired degree
sequence {ki}, the resulting ensemble is called the Undi-
rected Binary Configuration Model (UBCM) [9, 12, 13].
Being the degree an entirely local topological property, it
is affected by the intrinsic properties of vertices. For this
reason, one can assign a hidden variable xi ≥ 0 to each
node. Its value acts as a fitness score, which is hypothe-
sized to be proportional to the expected node degree [12].
If two nodes have a high fitness score, they are more
likely to be connected by a link. In this model one can de-
scribe the link probability as the normalized product of
their scores [9, 13, 14], resulting in the following expected
link probability:

pij = E[aij] =
xixj

1 + xixj
(1)

The values of xi are obtained by numerical optimization
of a specifically designed likelihood function [13, 15]. In

this framework, the hidden variables xi are the Lagrange
multipliers of the constrained problem that ensures the
expected degree 〈ki〉 = ∑i 6=j〈aij〉 of the vertex i equals on
average its empirical value ki. Interestingly this model
highlights the fermionic properties of the links, as they
are modeled like particles with only two states, namely
the link being present or not.

If the network is sufficiently random, the degree-
sequence alone can model the higher order patterns like
the clustering coefficient or the average nearest neighbor
degree. However, deviations of other graph theoreti-
cal measures between model and empirical network are
indicative of genuine higher-order patterns, like cluster-
ing or rich clubs, not simply accountable by the degree
sequence alone [14, 15].

III. SPECTRAL ENTROPIES FRAMEWORK

A measure of complexity is central to the understand-
ing of differences and similarities between networks, and
to decode the information that they represent. Supported
by the seminal demonstration that the von Neumann en-
tropy of a properly defined density matrix may be used
for network comparison [7], in this paper we address the
unsolved problem of inverse temperature selection and
show that the result of model fitting strongly depend on
it.

The first observation that an appropriately normal-
ized graph Laplacian can be treated as a density ma-
trix of a quantum system, is credited to the authors
of reference [16]. Indeed, the Laplacian spectrum en-
closes a number of important topological properties of
the graph [17–20]. For instance, the multiplicity of the
zero eigenvalue corresponds to the number of connected
components, the multiplicity of each eigenvalue is related
to graph symmetries [19–21], the concept of expanders
and isoperimetric number are connected to the first and
second largest eigenvalues [22, 23]. Moreover, the graph
Laplacian appears often in the study of random walk-
ers [24, 25], diffusion [26], combinatorics [27], and a large
number of other applications [19, 27].

After the first demonstration that a graph can be al-
ways represented as a uniform mixture of pure density
matrices [16], at least two different definitions of quan-
tum density for complex networks have been used [7, 28].
Adopting the notation of quantum physics, the von Neu-
mann density matrix ρ is a Hermitian and positive def-
inite matrix with unitary trace, that admits a spectral
decomposition as:

ρ =
n

∑
i=1

λi(ρ) |φi〉 〈φi| (2)
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for an orthonormal basis {|φi〉} and eigenvalues λi(ρ).
Thus, a density matrix can be represented as a convex
combination of pure states [28].

The von Neumann entropy of the density operator ρ
can be expressed as the Shannon entropy of its eigenval-
ues [29]:

S(ρ) = −Tr [ρ log ρ] = −
n

∑
i=1

λi(ρ) log λi(ρ) (3)

where log(·) is the principal matrix logarithm [30] when
the argument is a matrix. The von Neumann entropy of
the density matrix is bounded between 0 and log n [29].

We adopt the quantum statistical mechanics perspec-
tive [7], where the von Neumann density matrix ρ of
a complex network is built considering a quantum sys-
tem with Hamiltonian L in thermal contact with a heat
bath at constant temperature kBT = 1/β, where kB is the
Boltzmann constant.

In the perspective of Jaynes’ maximum entropy frame-
work [31], the state of maximum uncertainty about
the system, constrained by the conditions Tr [ρ] = 1
and 〈L〉 = Tr [ρL] is described by the quantum Gibbs-
Boltzmann distribution:

ρ =
e−βL

Tr
[
e−βL

] , (4)

where here e(·) is the matrix exponential when the argu-
ment is a matrix and the denominator is the so-called
partition function of the system, i.e. the sum over all
possible configurations of the ensemble, and is denoted
by Z = Tr

[
e−βL]. Borrowing the terminology of statis-

tical physics, thermal averages of any graph-theoretical
measure O over the ensemble defined by ρ are obtained
as:

〈O〉ρ = Tr [Oρ] =
1
Z

Tr
[
Oe−βL

]
. (5)

The choice of this density matrix for complex networks
is supported by the observation that previous definitions
of entropy [16, 28] in graph theory resulted in violation of
sub-additivity [7, 32], a central property of entropy [29].
The strength of this definition of von Neumann entropy
for graphs lies in the possibility to establish a connection
between quantum statistical mechanics and the realm
of networks. Moreover, this approach closely resembles
the one taken in the study of diffusion on networks [25],
where β is no longer interpreted as an inverse tempera-
ture of the external heat bath, but rather as the diffusion
time of a random walker [33, 34]. This renders the idea
that the network properties can be explored at different
scales by varying β [25, 32, 35].

IV. MODEL OPTIMIZATION

The application of the previously introduced con-
cepts from information theory and statistical mechanics
to complex networks, offers many intriguing possibili-
ties, the most important one being the quantification of
the amount of shared information between graphs and
model fitting. The relative entropy S(ρ‖σ) between two
density matrices ρ and σ is a nonnegative quantity that
measures the expected amount of information lost when
σ is used instead of ρ [7, 29] and it is defined as:

S(ρ‖σ) = Tr [ρ(log ρ− log σ)] ≥ 0. (6)

From the linearity of the trace operator, it is apparent
that Eq. (6) consists of two terms. The first term is the
negative value of entropy of the empirical density ρ. The
second term logL = −Tr [ρ log σ] can be seen as the
expected log-likelihood ratio between densities ρ and
σ [7, 29, 36]. For this reason we can also express Eq. (6)
as:

S(ρ‖σ) = −S(ρ)− logL(ρ, σ). (7)

Indeed Eq. (7) can be thought as a measure to quan-
tify the discrepancy between the density matrix ρ of an
observed network and the model density matrix.

In these settings, model optimization corresponds to
finding the optimal parameters θ̂ via minimization of the
expectation of the relative entropy over all graphs with
parameters θ:

θ̂ = argmin
θ

Eθ[S(ρ‖σ(θ)]. (8)

Rigorous calculation of the expected relative entropy re-
quires the knowledge of the spectral properties of the
model Laplacian. These can be obtained via application
of random matrix theory or by Monte Carlo sampling [37–
39]. However in this case a continuous gradient based
optimization cannot be applied as the relative entropy
is no longer differentiable. Other methods, like simu-
lated annealing or stochastic optimization [40, 41] can
be applied in this case, with substantial computational
burden. Here, for simplicity we use a different approach.
As any random graph model depends on some param-
eters θ = {θ1, . . . , θk}, the model Laplacian is a matrix
of random variables, where its elements are drawn from
some distribution with parameters θ. For example, in the
Erdős-Rényi random graph, the Laplacian off-diagonal el-
ements are Bernoulli random variables with expectation
−p, while the diagonal elements are binomial random
variables with expectation (n− 1)p. Hence, we denote
the expectation operator of the model Laplacian L(θ) at
fixed parameters θ as Eθ[L(θ)].
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As discussed in the appendix A we approximate the
expected relative entropy of Eq. 8 with the relative en-
tropy between the observed density and the density of
the expected model Laplacian:

Eθ[S(ρ‖σ(θ))] ≈ S(ρ‖σ(Eθ[L(θ)])). (9)

The accuracy of the approximation in Eq. 9 is higher for
large networks with low sparsity. Finally, as the expected
Laplacian Eθ[L] depends continuously on the parameters
θ, we can use continuous optimization methods based
on the analytically computed gradients with components
(see Appendix B for detailed calculation):

∂S(ρ‖σ(Eθ[L])
∂θk

= β Tr
[(

ρ− σ(Eθ[L(θ)])
)∂Eθ[L(θ)]

∂θk

]
.

(10)
This last equation is the basis of the following sections
and enables application of gradient based optimization
methods.

A. Thermodynamic interpretation

The Klein inequality states that the quantum relative
entropy of two density matrices is always non negative,
and zero only in the case ρ = σ [29]. It is interesting to
rework the expression for the relative entropy by mak-
ing use of thermodynamic quantities [8, 42]. For nota-
tional clarity here we set Lσ := Eθ[L(θ)]. We denote
the Helmholtz free energies Fρ, Fσ of the two systems
described by densities ρ and σ(Eθ[L(θ)]) as:

Fρ = −β−1 log Zρ

Fσ = −β−1 log Z(θ)

The partition functions are computed as Zρ = Tr
[
e−βLρ

]
,

Zσ = Tr
[
e−βLσ

]
. The ensemble averages of the empir-

ical and model Laplacians are 〈Lρ〉ρ = Tr
[
ρLρ

]
and

〈Lσ〉ρ = Tr [ρLσ ], where 〈·〉ρ indicates thermal averag-
ing with respect to the canonical distribution pertaining
to the Laplacian of the observed network Lρ. After rear-
rangement of the terms, the expression for the relative
entropy described in Eq. (6) becomes:

S(ρ‖σ) = β
[(

Fρ − Fσ
)
−
(
〈Lρ〉ρ − 〈Lσ〉ρ

)]
≥ 0. (11)

This expression is indeed general for any two density
matrices and not only in the settings discussed above.
Clearly, the Klein inequality implies the following con-
dition, also known as Gibbs’ inequality in statistical
physics [42]:

〈Lσ〉ρ − Fσ ≥ 〈Lρ〉ρ − Fρ. (12)

As the right hand side is independent on the parameters
θ, the minimum relative entropy is obtained by direct
minimization of the left-hand side of Eq. (12).

This expression has a profound physical interpreta-
tion [8, 42, 43]. Let us consider a system with Hamil-
tonian Lσ(θ

∗) where the parameters θ∗ are fixed. This
system is in equilibrium at temperature 1/β with a heat
bath and its density matrix is σ∗ := σ(θ∗). Suppose we
are given a sampling procedure to create real networks
from the system described by the density σ∗. Naturally,
the properties of a sampled network will slightly deviate
from its ensemble average. Indeed, except for a few triv-
ial cases, the density ρ of a single network sampled from
σ∗ will never be perfectly equal to σ∗.

Thus, the generation of a random graph instance given
a model described by Hamiltonian Lσ can be interpreted
as a sudden perturbation where the Hamiltonian of the
system is driven from Lσ to Lρ. In the general case this
corresponds to an irreversible transformation, except for
graphs where there are no possible rewirings preserving
the given constraints, up to node permutations.

In this sense, minimization of the relative entropy is
equivalent to finding a set of parameters θ̃ such that the
work required to bring the system described by ρ to a
state σ(θ̃) is minimum. However, θ̃ is not guaranteed to
be equal to θ∗ due to irreversibility of the sampling. In
order to precisely reconstruct the parameters θ̃ = θ∗, min-
imization of relative entropy averaged over the whole
set of samples is therefore needed.

The inverse temperature β plays the role of a resolu-
tion parameter allowing one to compare two networks at
different scales [7, 32]. Therefore, for maximum entropy
models with linear constraints, the optimal β tends to
zero, as we are comparing the lowest order properties
of the networks, linearly dependent on the adjacency
matrix. On the other hand, for β tending to zero, the two
density matrices ρ and σ tend to identity, so any choice
of the parameters trivially yields zero relative entropy.
Hence, to guide the optimization towards a non-trivial
solution, one must start with some initial guess of β0,
isothermically find a local minimum, and afterwards
decrease β. Eventually, as β tends to zero, the optimal
solution will change slowly while making the relative
entropy as small as possible. Here, for the Erdős-Rényi
and the planted partition model, we show analytically
that correct reconstruction of the empirical density pa-
rameters is possible only in the limit β→ 0.

B. Erdős-Rényi random graph

The Erdős-Rényi random graph is the simplest exam-
ple of random graph model [11]. Each pair of nodes is
connected by a link with constant probability p. Hence,
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the expected adjacency matrix and the Laplacian can be
written as E[Aσ ] = p(1− I) and E[Lσ ] = (n− 1)pI−
p(1− I), where 1 is the n× n matrix of ones and I is the
identity matrix. In this case it is possible to analytically
find the optimum solution for the problem of relative
entropy minimization. The partition function Zσ(n, p)
and the ensemble average of the expected Laplacian
Tr [ρE[L]] of the model are:

Zσ(p) = (n− 1)e−nβp + 1

Tr [E[L(p)]ρ] = p(n− R(n, β)), (13)

where R(n, β) = Tr [1ρ] = ∑n
i,j ρij is the grand sum of

density matrix. Both Zρ and Fρ are observation depen-
dent quantities and must be evaluated numerically from
the observed network. Finding the minimum of the left
hand side of Eq. (12) corresponds to setting to zero its
derivative with respect to p:

∂

∂p

(
Tr [E[L(p)]ρ] +

log Zσ(p)
β

)
= 0

= Tr
[

∂E[L(p)]
∂p

ρ

]
− n(n− 1)

eβnp + (n− 1)
= 0 (14)

Solving for p we can find an analytical expression for
the optimal density p̃ that can be reconstructed by the
model:

p̃ =
1

nβ
log
[

R(n, β)(n− 1)
(n− R(n, β))

]
. (15)

The reconstruction of the observed empirical density
p∗ = 2m∗/(n(n− 1)) is only possible in the limit β →
0. It can be shown, with the help of computer algebra
system, that:

lim
β→0

p̃ = p∗ =
2m∗

n(n− 1)
. (16)

We also extended the same calculations to the planted-
partition model, the simplest extension of the Erdős-
Rényi model to networks presenting a community struc-
ture [44].

C. Planted partition model

In the planted partition model, the nodal block mem-
bership vector ci ∈ {0, . . . , b} specifies to which one of
the b blocks the node i belongs and it has the role of
a hyper-parameter. The model parameters are the in-
trablock and interblock link densities pin and pout. The
expected adjacency matrix E[A] and Laplacian E[L] are:

E[A] = δpin + (1− δ)pout (17)

E[L] = I (pin(n/b− 1) + pout(n/b)(b− 1))

− δpin − (1− δ)pout, (18)

where δ = {δci ,cj} is the block assignment matrix. Anal-
ogous calculations as in the Erdős-Rényi case can be
analytically performed in the planted partition model
with exactly b blocks of the same size. In this case the
partition function of the model Zσ(pin, pout) becomes:

Zσ(pin, pout) = Tr
[
e−βE[Lσ ]

]
=

= (n− b) exp [−βn (pin + (b− 1)pout) /b]+
+ (b− 1) exp [−βnpout] + 1. (19)

Setting the gradients of relative entropy (10) to zero, re-
sults in a system of two equations:

Tr
[

∂E[Lσ(pin, pout)]

∂pin
ρ

]
+

1
β

∂ log Zσ(pin, pout)

∂pin
= 0

Tr
[

∂E[Lσ(pin, pout)]

∂pout
ρ

]
+

1
β

∂ log Zσ(pin, pout)

∂pout
= 0.

(20)

An analytical solution is possible for b = 2 blocks:

p̃in =
1

βn
log
[
(n− 2)2R(2Q− R)

(n− 2Q)2

]
(21)

p̃out =
1

βn
log
[

R
2Q− R

]
(22)

where R is the grand-sum of ρ and Q = Tr [δρ]. As in the
previous case, the empirical intra-block and inter-block
densities p∗in and p∗out can be reconstructed only in the
limit of infinite temperature:

lim
β→0

p̃in = p∗in

lim
β→0

p̃out = p∗out. (23)

Unfortunately, though, the calculations performed for
these two last examples cannot be straightforwardly ex-
tended to the configuration model (UBCM) and other
more complex variants of the exponential random graph
model, as the expression of the partition function Zσ for
general models is too complex for a fully analytical treat-
ment. Therefore, we rely on numerical simulations to
show that the limit β→ 0 yields a correct reconstruction
of model parameters for the UBCM.

D. Configuration model

In the Undirected binary configuration model (UBCM)
the model parameters are the hidden variables x = {xi}.
Given some network with fixed degree sequence, we can
consider its Laplacian Lρ as the Laplacian of a graph
sampled from the UBCM ensemble.
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Importantly, being Lρ a realization of a random graph
ensemble, we cannot expect to be able to reconstruct ex-
actly the parameters x∗ which generated that network.
As a demonstration of this concept we generated a ran-
dom network with n = 40 nodes and a degree sequence
sampled from the uniform distribution.

Starting from a random solution x(t0, β0), we mini-
mized the relative entropy at an initial guess of β0 � 1
to obtain the new solution x(t1, β0). This procedure was
repeated gradually decreasing β at each iteration, until
the solution was not changing considerably, for β close
to 0.

As a measure of convergence, we chose the difference
of the total number of links, which in thermodynamic
interpretation equals to half the difference of the total
energies: ∆m = (Tr [E[Lσ ]] − Tr

[
Lρ
]
)/2. The bigger

the absolute value of ∆m, the less similar the empirical
network is from the average realization of the ensemble.

In Figure 1A we plotted the spectral entropies of the
empirical network (red line) and the fitted model at op-
timal solution x̃ (blue line) as a function of β. Figure 1B
shows the difference in the number of links ∆m as a func-
tion of β. At the optimal solution for β → 0, there is a
small deviation in total number of links (∆m ≈ −3.64).
This is explained by the irreversibility of the sampling
process, that implies inability to precisely reconstruct the
true parameters x∗ from only one sample. However, the
deviation of the reconstructed parameters x̃ from x∗ can
be reduced with enough samples of the random graph
ensemble, as shown in Figure 1 (panels C and D).

As a second example we chose a toy network con-
sisting of a number of cliques of increasing size con-
nected in a ring, and one of its degree-preserving random
rewiring ( Figure 2C,F). In the ordered case, the clique
structure cannot be accounted by a first-order average
model alone, making that specific instance highly un-
likely in our framework when sampling from the config-
uration model. Therefore, following the fitting procedure
described above, one can see a significant difference in
the number of links between model and data ∆m even
at a very small beta Figure 2B. In other words, in the or-
dered case, the degree sequence alone cannot explain the
differences in the spectral entropies, thus indicating the
presence of genuine regular patterns that substantially
alter the properties of diffusion of the random walker
defined by the density matrix. Indeed, this difference
reflects the intrinsic inability of the model to account for
the characteristic structure of the underlying network.

After fitting, non vanishing ∆m serves as an indica-
tor of the presence of ordered patterns in the given net-
work that are not explained by this model alone. To test
this idea we applied the same optimization technique to
the degree-preserving randomly rewired network in Fig-

ure 2F, and plotted the results in Figure 2D,E. In this case
the random rewiring made the empirical network more
adherent to the optimal reconstruction by the model and
the difference in the total number of links at β close to
zero is much smaller than in the ordered case. This is also
evident by the better adherence in the spectral entropies,
as shown in Figure 2D.

Importantly, the spectral entropy optimization frame-
work described above can be applied to descriptive net-
work models other than those described by the exponen-
tial random graph model.

V. SPATIAL MODELS

The embedding of a network in a two or three dimen-
sional space has bearings on its topological properties.
When the formation of links has a cost associated with
distance, the model must accomodate additional spatial
constraints, which introduce correlation between topo-
logical and geometrical organization [45]. An example
is represented by neural networks, in which communi-
cation between neurons implies a metabolic cost that
depends on their distance [46, 47]. The material and
metabolic constraints of neuronal wiring are factors that
contributed to shaping brain architecture [46, 48, 49].
Computational and empirical studies converged on the
result that a multiscale organization of modules inside
modules is the one that satisfies the constraints imposed
by minimization of energetic cost and spatial embed-
ding [46, 47, 50, 51]. Here, wiring cost includes the physi-
cal volume of axons and synapses, the energetic demand
for signal transmission, additional processing cost for
noise correction over long distance signaling and suste-
nance of the necessary neuroglia that support neuronal
activities [46]. Therefore, it is tempting to assume that
the expected number of neural fibers between two ar-
eas could be expressed as a decreasing function of their
length. With this hypothesis in mind, we verified the abil-
ity of our optimization approach to work with a simple
descriptive model of the observed neural connectivity in
the macaque cortex [52, 53]. The model, called Exponen-
tial Distance Rule (EDR), is a dense weighted network
model describing the decline in the expected number
of axonal projections wij as a function of the inter-areal
distances dij and a tunable decay parameter ` ∈ R:

E[wij] = Ce−`dij , (24)

where C is a normalization constant. Here, the distances
dij are measured along the shortest path connecting areas
via white matter, approximating the axonal distance [52].

We used a dataset of cortico-cortical connectivity gener-
ated from retrograde tracing experiments in the macaque
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Figure 1: Normalized von Neumann entropy and reconstruction error of a random network (top panels) and its
ensemble average with the same degree sequence (bottom panels). In panels A,D the red curves are the spectral

entropy of the observed network described by density ρ, blue curves are the spectral entropies of the model network
at optimum parameters σ(θ̃). In panel B a systematic error exists at every β (even in the limit β→ 0): in the spectral

framework the UBCM cannot fit all the specific properties of the highly ordered network. On the other hand, an
ensemble average network has a structure that can be better reconstructed by the UBCM, as shown by the error ∆m

going to zero in Panel E.

brain [52, 53]. Following the procedure introduced in the
previous sections, we fitted the macaque connectome net-
work with the EDR model. Differently from the random
graph models described in previous sections, we found
an optimal inverse-temperature parameter β that min-
imizes the reconstruction error, as shown in Figure 3B.
At this optimal β∗ ≈ 3.05 the reconstructed decay pa-
rameter ˜̀ = 0.1505 [mm]−1 is comparable to the values
obtained by the three methods applied in the original
paper from Ref [53]. The non-vanishing difference in
total weights between reconstructed and object networks
indicates that the model cannot account completely for
the structures such as the high density core observed in
the connectome [53]. Hence, a non-zero optimal value
for β suggests the existence of a scale at which the model
best describes the topological properties of the network.

VI. CONCLUSION

The spectral entropies framework enables comparing
networks taking into account the whole structure at mul-
tiple scales. However, this approach introduces a hyper-
parameter β that plays the role of an inverse temperature,
and whose tuning is critical for the correct estimate of
the model parameters.

Leveraging a thermodynamic analogy, we have shown
that the optimal value of the hyperparameter is model
dependent and reflects the scales at which the model
best describes the empirical network. Moreover, we have
described procedures to determine β for the model pa-
rameter optimization and for a tractable approximation
of the expected relative entropy.

Specifically, we focused on three examples from the ex-
ponential random graph model, namely the Erdős-Rényi,
a planted partition and undirected binary configuration
model. In the Erdős-Rényi model and in the planted par-



8

A

10−2 10−1 100 101 102 103
0

0.2

0.4

0.6

0.8

1

β−1

S/
lo

g(
N
)

S(ρ)
S(σ(x̃))

B

10−2 10−1 100 101 102 103
0

20

40

60

80

100

β−1

∆
m

C

D

10−2 10−1 100 101 102 103
0

0.2

0.4

0.6

0.8

1

β−1

S/
lo

g(
N
)

S(ρ)
S(σ(x̃))

E

10−2 10−1 100 101 102 103
0

20

40

60

80

100

β−1

∆
m

F

Figure 2: Normalized von Neumann entropy and reconstruction error of two networks: a ring of cliques (top panels)
and its degree-preserving random rewiring (bottom panels). In panels A,D the red curves are the spectral entropy of
the observed network described by density ρ, blue curves are the spectral entropies of the model network at optimum
parameters σ(θ̃). In panel B a systematic error exists at every β (even in the limit β→ 0): the UBCM cannot fit all the

specific properties of the highly ordered network. On the other hand, a degree preserving rewired network has a
structure that can be better reconstructed by the UBCM, as shown by the error ∆m going to zero in Panel E.

tition model, we analytically demonstrated that correct
reconstruction is possible only in the infinite temperature
limit. In the configuration model this hypothesis was
verified numerically. The presence of ordered structures
unaccounted for by the model is reflected in a bias of the
total energy, corresponding to the total number of links
in the reconstructed network.

Motivated by these findings in synthetic networks, we
applied the spectral entropy framework to a real-world
network of the macaque brain structural connectome. A
structural connectome is a spatial network whose devel-
opment is thought to be constrained by geometrical and
wiring cost factors. Hence, we evaluated an exponential
distance rule model that assumes that the weight of inter-
areal connections is a decreasing function of distance. We
demonstrate the existence of a non-zero optimal value
of β for the computation of model parameters. However,
the residual energy bias indicates the network structure
at certain scales cannot be described by the exponential
distance rule model alone.

The procedures demonstrated here make it possible to
use relative entropy methods for practical applications to
the study of models of real-world networks, effectively
realizing a conceptual step from classical maximum likeli-
hood methods to their density matrix based counterparts.
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Appendix A: Approximation of expected relative entropy

We can exploit the commutativity and linearity of the
trace and expectation operators to obtain a simpler ex-
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Figure 3: Normalized von Neumann entropy and reconstruction error of the macaque brain connectivity network
(panel C). In panel A the red curve is the spectral entropy of the observed network described by density ρ, blue curve
is the spectral entropy of the model network at optimum parameter σ(θ̃). The optimal hyperparameter β is found in

panel B where the reconstruction error ∆m achieve its minimum denoted by a red dot.

pression for the expected relative entropy:

Eθ[S(ρ‖σ(θ)] = Tr [ρ log ρ]− Tr [ρEθ [log σ(θ)]] .
(A1)

By the positive-definiteness of the density σ, we have:

log(σ(θ)) = −βL(θ)− I log Z(θ). (A2)

Plugging this into the expression of the expected relative
entropy we obtain:

Eθ[S(ρ‖σ(θ)] = Tr [ρ (log ρ + βEθ[L(θ)] + IEθ [log Z(θ)])]
(A3)

This last expression depends on the expected Laplacian
of the model Eθ[L(θ)] and on the expected log-partition
function Eθ[log Z(θ)]. An analytical estimate of the ex-
pected Laplacian as function of the parameters θ can
readily be obtained, but computation of the expected
log-partition function Eθ[log Z(θ)] is more difficult and
requires techniques from random matrix theory [37–39].
This is clear as the trace of a matrix is equal to the sum of
its eigenvalues, yielding:

Eθ [log Z(θ)] = Eθ

[
log

(
n

∑
i=1

e−βλi(L(θ))

)]
. (A4)

We can estimate the expected log-partition function by
means of matrix concentration arguments [54, 55]. A
random matrix is said to concentrate when, given some
spectral norm, one can tightly bound the spectral norm
of the difference from its expected value [56]. In the
case of network-related matrices, the eigenvalues of the
Laplacian and those of its expectation are strictly related
and can be tightly bounded with high probability [55,
57, 58]. This approximation becomes more precise, the

larger and denser the graphs are [59, 60], an effect of
the concentration of measure phenomenon. Therefore,
following the ideas presented in references [55, 57] that
apply in our same settings, we replace λi(L(θ)) with
their counterparts from the expected Laplacian λi(Eθ[L]).
Substituting back, we recover an expression that involves
the relative entropy between the observed density and
the density of the expected Laplacian:

Eθ[S(ρ‖σ(θ))] ≈ S(ρ‖σ(Eθ[L])). (A5)

Appendix B: Gradients of the relative entropy

Here we present the analytical calculation of the gradi-
ents of the relative entropy described in Eq. 10. We can
decompose the relative entropy using Eq. A2 as:

S(ρ‖σ(Eθ[L])) = β Tr [ρEθ[L(θ)]] + log Tr
[
e−βEθ[L(θ)]

]
(B1)

where we have used the fact that Tr [ρI] = Tr [ρ] = 1 by
definition of density matrix. Taking the derivatives with
respect to the k-th parameter θk, and by linearity of the
trace operator, we get:

∂S(ρ‖σ(Eθ[L(θ)]))
∂θk

=β Tr
[

ρ
∂Eθ[L(θ)]

∂θk

]
+

∂

∂θk
log Tr

[
e−βEθ[L(θ)]

]
(B2)

The following identity holds for the derivatives of the
matrix exponential function:

d
dt

Tr
[
eX(t)

]
= Tr

[
eX(t) dX(t)

dt

]
, (B3)
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so we can simply compute the second term involving
the log-trace by standard calculus tools. After some al-
gebraic manipulation, we finally arrive to the expression
for the derivative of the relative entropy with respect to

the model parameters as described in the main text:

∂S(ρ‖σ(E[L]))
∂θk

= β Tr
[
(ρ− σ(Eθ[L(θ)]))

∂Eθ[L(θ)]
∂θk

]
(B4)
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[50] Gaëlle Doucet, Mikaël Naveau, Laurent Petit, Nicolas Del-
croix, Laure Zago, Fabrice Crivello, Gaël Jobard, Nathalie
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